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I. INTRODUCTION 

Increased theoretical and experimental interest in multi- 

particle scattering amplitudes has recently sparked interest 

in the complex helicity plane. 1 This is because in multi- 

particle amplitudes singularities in complex helicity play a 

role very similar to singularities in complex angular nomentum-- 

both control specific, distinct asymptotic limits.' Despite 

their similar manifestations, however, there are fundamental 

differences between ccmpiex angular momentum and ccmplex helicity 

ilhereas angular momentum is a Poincare invariant qilantity and 

singularities in complex angular momentum are manifestations 

of dynamical objects like bound states and resonances, helicity 

is not a Poincare invariant and thus singuiarities in compiex 

helicity are not expected to be manifestations of independent 

dynamical objects. Indeed, it is usually assumed that the 

helicity singularities are completely determined by the angular 

momentum singularities--a Regge pole in angular momentum at 

j q Xi yieiding singularities at "sense" values of the helicity, 

m-a.-p 1 (1 

where p is a positive integer or zero. Here we give arguments 

for this rule. 

In order to illustrate the importance of the rule (1.11, 

let us briefly mention two of its interesting consequences. It 

has recently been shown that the vanishing of the Pomeranchon- 

particle-Reggeon vertex for a Pomeranchon with unit intercept3 

implies of the vanishing of the Pomeranchon-particle-particle 

1) 
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elastic vertex. 4 The Pomeranchon-particle-Reggeon vertex con- 

tains a term [see Eqs. (1.15) to (1.17) below] 

? - 4-3 P (1.2) 

6 

where p . is the elastic coupling and in Fig. 1 

d(t2) = clR’ T&y, (+-) . This is the only 

term 2 l/&R so the vanishing of (1.2) implies the vanishing 

of P* Since the decoupling is proven only for $ = Cm2 - t2) * 

- o(R3 an additional term in the vertex of the form 

would cancel (1.2) and cause the proof of the vanishing of the 

elastic coupling to fai15--thereby saving the simple picture of the 

Pomeranchon as a Regge pole with exactly unit intercept. 

However, such a term corresponds to a "nonsense" helicity sin- 

gularity at m = CC, + 1 and is excluded by (1.1). 

As a second example, we note that (1.1) implies the uniformity 

of the interchange of Regge and scaling limits for inclusive 

cross sections. The inclusive cross section for 1 + 2 + 2' + X 

(see Fig. 2) is 

E &z /v 

dP3 
$ &-CM, A, :+,M~) 7 

2 2 
where s = (pl + p2) , t = (p2 + p;) , and M2 is the mass of X. 

In the Regge limit (sjoo , M2 and t fixed), Regge behavior of 

the exclusive processes gives 

~ s2a(t) f,(M% , (1.3) 
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whereas in the scaling limit CM'*&, s/M2 and t fixed) we have 

DiscM2 A6 
% (M2)a(o) fs (s/M2,t) . (1.4) 

Uniformity' of these limits would require 

fs(s/M2,t) 'Ir 2 2a(t) 
(e/M ) d (t) 

as s/M23 ~0 . Thus we have 

(1.5) 

which gives the behavior usually assumed for inclusive cross 

sections near the phase space boundary. Although this uniformity 

and the consequent equality of powers of s in (1.3) and (1.5) 

may seem trivial, it is not. For example, the function 

DiscM2 6 

2 2a(t)+2 (M2)a(o)+3 
A = (s/M) 

.~(M~)~+be' 
(1.6) 

satisfies (1.3) and (1.4) but not (1.5). The limit in (1.5) is 

a combined Regge (M2+oD ) - helicity (s/M=+ 00) limit. Thus 

the power of (s/M212 is given by the leading singularity in 

complex helicity whereas the power of s ' in the Regge limit (1.3) 

is given by the leading singularity in complex angular momentum. 



The rule (1.1) says these are equal and thus (1.5) holds [the 

example (1.6) would require a "nonsense" helicity pole at 

m = C%(t) + 11. 

In the remainder of this section we establish our terminology 

and notation and review the basic elements of complex helicity 

analysis by discussing the five-particle amplitude since it 

is the simplest example of the use of complex helicity. In 

Section II we discuss in detail the arguments for (1.1). Con- 

sider a double partial wave analysis in the tl and t2 channels 

as shown in Fig. 1 

m m m 

(1.7) 

where parity invariance has been used to remove sin mu terms. 

We expect that the behavior for large cos 6 1, cos 8,, and cosw 

can be obtained by,performing Sommerfeld-Watson transforms in 

j,, j,, and m respectively. Since 

s1 = co& 1 
s2 = cose2 (1.8) 

s12 = h2-tl-t2) case 1 case - 2 2% sine 1 sine 2 cosw 
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these correspond to large s1,s2, and 512, respectively. Thus sin- 
ularities complex angular momenta j, and j, determine the behavior for 

Single Regge Limits: - 

q-3 40 ; w5, ) L. ) t,,t1 fix%! ) (1.9a) 

si+pa; ::,2 
/s 1 ) 5 ') t , I t 2. (1.9b) 

Double Regge Limit: 

S 1 , S,-=? 33 i (1.10) 

Singularities in the complex helicity m determine the behavior for 

Complex Helicity Limit: - 

2.) 2 -> cn ; Cl, s, ,t,,-t, -I: :,!cd. (1.11) 

Singularities in both angular momentum and helicity determine the 

mixed limits: 

Regge - FIelic_ity Limits: 

s, ) sl+ -3 - ; S2,t,,tL -LX'd ) 

s,, 1 

(1.12a) 

(1.12b) 

and 

Double Regge - Helicity Limit: 

(1.13) 

In order to relate the behavior in these limits to singu- 

larities in complex angular momentum and helicity we perform a 

multiple Sommerfeld - Watson transform of (1.7). The essential 

features of this transform are exhibited by the following represen- 

tation for As', 

b5 = (l-i;:7 iJmSdj,jb,r(-m)ri-j,,,;jfi-;,+i~j 

t (w:,jil-w(-;2 yi2-M(->,z)m &(j,;i,,lv, ,’ 
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The nontrivial dependence on jl, j,, and m of the group represen- 

tation functions is exhibited by the three gamma-functions. The 

remaining dependence,as well as kinematic factors from converting 

to invariants using (1.8),have been absorbed into the partial 

wave amplitude a(jl, j,, m; tly t,). Equation .(1.14) has the advan- 

-tage of exhibiting the dependence of the amplitude on the invari- 

ants in terms of which its analyticity properties are most simply 

stated. 

The integration contour in (1.14) is such that the partial 

wave sum is recovered by closing it to the right -- see Fig. 3. 

Thus the singularities in P C-m) 1 ie to right of the m contour 

and the singularities in r(-jitm) lie to the right of the ji 

contour. The latter correspond to "sense" values of the helicity, 

m=ji-p (p nonnegative integer). 8 The singulariti,es due to the 

r (-ji +m) lie to the left of the m contour, however, and thus 

will give contributions to the behavior as s12/~,C;--:,, . As 

the m contour is swept to the left the poles in T C-j i+m) will 

pinch the ji contour against any dynamical singularities in ji 

in the partial wave amplitude (e.g., Regge poles) and produce 

singularities in m. Thus a singularity at ji= CXi(ti)'tii will 

lead to helicity singularities at 

m=di-p (p nonnegative integer). (1.1) 

Hence, if we assume the partial wave amplitude has no singulari- 

ties in m, the complex helicity singularities are determined 

completely by the "dynamical" complex angular momentum singulari- 

ties (e.g. those in the partial wave amplitude). 

Let us now discuss what arguments can be made for this 
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assumption. Suppose we consider the double-Regge limit of 

(1.14). Then singularities at ji = di lead to 

.drn r(-rn) r(-d,+lu\)&+!.+ j 
(1.15) 

he- r-’ 1 
,_~ Wi. J 

‘C-S,) 4-m (-ll)%-w (-SJ” /?(*I; t,,?! 2 ‘j . 

In general the behavior (-sl) 1 Cd - m (- s ) '2 - m represents a 2 

simultaneous discontinuity in sl and s2 in the double-Regge 

region of phase space. Such physical region simultaneous dis- 

continuities in overlapping variables are prohibited by the 

Steinmann relation. Therefore, assuming the m contour can be 

closed to the left, 9 we see that singularities in m are allowed 

only for m differing from either cdl or&2 by an integer. 
1 We 

then obtain 

As 

(1.16) 

-) WI2 j+(-s, )dl-42 V2 (7~ t,,tl 11 

where 7 = s"/j,~, , 

The helicity integral (1.15) naturally provides Laurent expan- 

sions for Vi about 7' ~0 ,& 
(1.17) 

The "kinematic" singularities in helicity in the PC- di + m) 

provide the terms with nonnegative k, i.e. "sense" values of the 

helicity m = di - p. "Nonsense" terms for negative k would 

correspond to "dynamical' singularities in helicity, i.e. singu- 

larities in the residue t2) of the partial wave ,-- 

amplitude. 



The "nonsense" terms in (1.17) clearly cannot give any con- 

tributions to the residues of the poles for d, or d, integral, 

since they correspond to nonsense helicities (nonpolynomial 

residues). Thus they would be terms which contribute to none 

of the resonances but which do contribute to the Regge trajec- 

tories. Such a situation is quite at odds with our usual notions 

of the trajectory interpolating the resonances but not a priori 

inconceivable. 

We close this section with a technical remark in order to 

eliminate a possible source of confusion. In general one expects 

fixed pole dynamical singularities as well as moving poles and 

cuts. 1 These are located at ji - m = n where n is a negative 

integer. They lie to the right of the m contour, however, and 

n 
thus do not produce the "nonsense" terms 32 - . (Alternatively, 

if the ji integrals are done first one sees fixed poles do not 

produce singularities in m since they cannot pinch the contour 

against the other dynamical singularities on the left of the ji 

contour 0~ the singularities in p (-ji + ml.) The "nonsense" 

terms would be produced by singularities at di - m = n to the 

left of the m contour. 
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II. ARGUMENTS AGAINST "NONSENSE" HELICITY SINGULARITIES 

In this section we give four rather different arguments 

against "nonsense" helicity singularities, each proceeding from 

different technical assumptions. The first two arguments (Sees. 

1I.A and 1I.B) rely on the existence of the Sommerfeld-Watson 

transform or, equivalently, the uniformity of interchange of 

Regge and helicity limits. Most readers will find this assump- 

tion convincing. However, in Sec. I1.C we present a more funda- 

mental argument which procedes directly from analyticity by 

use of the Steinmann relation and does not require this assump- 

tion. Since the Steinmann relation only applies to the physical 

region, this argument needs to be supplemented by the assertion 

of Sec. 1I.D that other singularities do not contribute to the 

Regge or helicity limits. 

A. Argument from Regge Behavior 

The Sommerfeld-Watson representation (1.141 suggests that 

the asymptotic limits sl+a , s2-foo, T+ 00 are simply 

determined by the singularities in j,, j,, and m in the partial- 

wave amplitude and give the same result when taken in any order. 

Indeed, the complex angular momentum and helicity language 

really only makes sense if this is the case. If the limits can 

be uniformly interchanged in this way, consistency with Regge 

behavior can be used to exclude "nonsense" helicity singulari- 

ties in certain cases. 
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Consider the discontinuity of AS in sl in the physical 

region for the 2 + 3 process. The discontinuity is then given 

by a sum over intermediate states as shown in Fig. 4, 

D;sc,, A, = r" ",k & b,z,s,; 6, t2 > . k=o (2.1) 

The sum over powers of s2 is equivalent to a partial wave expan- 

sion in the angular momentum of the intermediate states. In 

the Regge limit, s12-S~oand s12/s2 fixed, we can use Regge 

behavior of the individual exclusive processes to obtain 

Disc&- - 
-32 -9 * cQ+J~)~ (5,; t,,t,). (2.2) ZZ 

+!*2 -f-ire d 

The behavior 

(2.3) 

arises because s2 corresponds to helicity k of the intermediate 

state [see Eq. (2.12)]. Comparing with (1.14) we see that (2.2) 

apparently corresponds to only "sense" values of helicity m = d2 - p. 

Unfortunately we cannot conclude that "nonsense" terms are 

absent since s12/s2+o0 is not inside the physical region for the 

2 + 3 process and it is possible that (2.2) diverges when con- 

tinued to that point. [In this case Eq. (2.2) should be rearranged 

into an expansion about a point in the physical region where 

the series converges.] Such divergences of partial-wave expan- 

sions are common phenomena. 
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The simple Regge argument can be used in the correspond- 

ing case of Disc 10 

3 
AS shown in Fig. 2, however, since then 

s12's2' s31/s3 +d) is inside the physical region. The kinematics 

discuss below the possibility of continuing this result 

&3 = 0 to obtain the absence of "nonsense" helicity s 

ties for A5. 

for this case will be reviewed in Sec. 1I.C below. We also 

to 

ingu lari- 

B. Argument from Unitarity 

If the interchange of limits is uniform, we can also argue 

against "nonsense" helicity singularities directly from unitar- 

ity. Again 

cal region. 

Regge-Helic 

we must consider A S so we can work inside the physi- 

The discontinuity of AS in sl (see Fig. 2) in the 

ity limit analogous to (1.121, sl, s12/s1, sS1/sl+Q 

with the other invariants fixed, is 

Disc,, A,- S, 

* Vn,n31t,,t,,fj,;s,,s,,s~31 , 
(2.4) 

We have exhibited the contributins of possible "nonsense" helicity 

singularities at d, - n2 and d, - n3 (n, and n3 are negative). 

The general limit (2.4) can be related to the forward limit 

where tl = 0, t 2 = t3, s23 = 0, s2 = s3 q mz q mi by the Schwartz 

inequality where the inner product is taken as a sum over inter- 

mediate states. 11 This is illustrated graphically in Fig. 5 and 

gives 
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(2.5) 

where dV is the leading trajectory with vacuum quantum num- 

bers. Thus when dl lies above TV (O),the next singularity 

p,"l";", o(V(0), the existence,of "nonsense" helicity singularities 
e 3emevaI 1;tii-b requ~es covrc.rpowdba 

at n2 = n 2 and n3 = n 3 in the forward limit. % 
s;maw l9.,4iCS 

owever, for 

negative t2 (or t,) the forward amplitude is forbidden by uni- 

2 12 tarity to grow by a power larger than s:~ (or s31) Thus "n2n3 

vanishes for all @!((t,) 1 ZV (0) and t2, t3 3 0 when 

42-"2 >lor cf3 -n 3 > 1. [The condition x (tl, t2, t3) L,O 

must also be satisfied in order to assure that one is in the 

physical region--see Sec. II.C.below.1 For most trajectories 

and negative integers n there will be some region of negative 

t2' t3 where V "2"3 ,,must vanish. Since V n2n3 is expected to be 

an analytic function of t2 and t3, it will then vanish for 

all t2 and t3. However, for trajectories like the pion with d(O) L 0 

we cannot exclude n = -1 terms by this argument. 

C. Argument from Steinmann Relations 

We have noted above that uniformity of interchange of limits 

and Regge behavior (or unitarity) exclude "nonsense" helicity 



singularities in certain cases. However, the existence of 

Sommerfeld-Watson representations like (1.14) is not rigorously 

established 2 so we would like to try to do without the uniformity 

assumption. There are several types of nonuniformities to be 

concerned about. 

(i) Nonuniformity of interchange of Regge and Helicity 

limits, for .the same Reggeon. When the Regge argument of Sec. 1I.A 

can be applied this is excluded. For example, suppose sQ /5, + co 

is inside the physical region for A5. Consider the two orders of 

limits 5,+ Q [Regge limit (1.3b)l then SIQ/~,+~ and 

x,2--3 - [Helicity limit (l.ll)] then 5,-‘, a which both 

lead to the Regge-Helicity limit (1.12b). In the first order 

Eq. (2.2) gives 

& A, r s,,d’ PO b-1,’ t&J. 
(2.6) 

The second order can also be obtained from Regge behavior of the 

individual intermediate states if s1, /S + - is inside the 
2 

physical region merely by changing the relative orientation of the 

blobs in Fig. 4 [the corresponding case for A6 is studied in detail 

below--see Cq. (2.12) and Ref. 18.1 Taking this limit on (2.1) 

and using (2.3) we obtain (2.6) again. 

(ii) Nonuniformity of interchange of Regge-Helicity limit 

for one Reggeon with Regge limit for another Reggeon. The 

example (1.6) is an instance of such a nonuniformity. An analagous 

example for A 5 is 
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ps = s,,“/l 5, %- 4 1 
5,5-2 

+ / - . 
51 a Si 

(2.7) 

First taking the Regge-Helicity limit (1.12 b) then s, 4 og 

(1.9a) yields s d ,2 1s, 
4-d,+f . The reverse order of 

limits yields q2 s arda I 
'This type of 

behavior cannot be excluded using the Regge arguments of Sec. I1.P. 

since as 5, + 00 the number of intermediate states increases 

and the sum could diverge to produce such beh;lvior. 
13 

In order to exclude this type of behavi.or and provide another 

type of argument against nonsense helicity singularities we extend 

the Steirimann relation argumentLof Sec. I. In Sec. I we recalled 

that the Steinmann relation requires w1 = o(;-k 0; any 

integer). ITow we Show that in fact k must be nonnegative in CEP- 

tain cases. The argument in many respects is similar to the Regge 

argument of Sec. II. A but it is valid for s1 large. 

Again we consider ~the six-particle amplitude of Fig. 2 in 

the single Regge-helicity limit: 



Disc,, A 6 /v s p’, (S+ ii”“n1 ( 8% )‘3-‘3 +‘I 
(2.45 

4 n1n?3 It,,t,,t,; %,hlj23) . 
If we take the further limit s2, s3, ~22 --)pD with s23 

fixed we expect to obtain the same behavior as in the triple 

Regge-helicity limit which is dnalOgOUS to (1.13) 

v n2f13 /-” p 5, c/13 Q v w’ozd3 (4,,i’,&) :,*, ) 
"1 

where we have also picked out a single term s23 . The triple 

Regge-helicity limit can also be reached by taking the helicity 

limit ‘yij 3 a on the triple-Regge form 

(2.9 1 
Disc 5, A, - 2, 

4 (+ )“‘[ L)“’ 

’ G l&i,; Q+ V;I&$, j , 

Thus the form (2.9) corresponds to a 

nonsense term 

in the expansion analogous to (1.17). The particular ratios ot 

invariants occuring in (2.8) or (2.lO)may appear peculiar to the 

reader unfamiliar with these limits but we will see below that 

they have a very natural meaning. 14 

The behavior (2.8) which allows the "nonsense" term (2.4) 

to survive in the triple-Regge-helicity limit implies nonpoly- 

nomial dependence in Disc 
S1 

AS in s2, s3, and s23 since ni are 

negative. Such behavior generally would be expected to arise 

from singularities in Disc For example 



as long as the integrals converge. A cut of finite length thus 

naturally produces such inverse powers. We shall now argue that 

these singularities would be in the physical region in (2.4). 

Such singularities are forbidden by the Steinmann relation since 

the discontinuity in sl cannot have simultaneous discontinuities 

in the overlapping variables 52, 53, and s23. Thus "nonsense" 

terms are excluded in (2.3) and probably are then also absent in 

(2.41.lS 

17 

We now wish to show directly that the physical region for 

( 2.~4) covers essentially all real 52, s3, and 523. To do this 

we parametrize the momenta as follows. Let frame 2 be such that 

the intermediate state of mass ,Gl is at rest and pl and 

92 = P2 + P2' are along the z- axis. Tl;is differs from the 

t2- channel center-of-mass by a boost along the z- axis. 

Similarly frame 3 has 'cl at rest and p: and 93 = P3 + P3' 

along the s-axis. Since \I1 is at rest in both frames they 

must differ by a rotation Rs(q3) Ry(@,) RZ$). In the physical 

regions for the reactions pl + P2 -3 - ~2, + psi and 

- ps l-P3 , 3 pl, + p3 we have t2 ,t3 C. 0 and 42, 8,, q, are 

physical angles of rotation. We then find in the limit 

s,, f/z/c -I /~~I//-., 3 d j 

275 ("09 o. *d / + - 

5, '&+ ""4, [*,:j, 
(2.12) 

- f3 - 2&&3 & ] 
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From (2.12) we see that a contribution to the discontinuity 

in s 1 of spin J must be a polynomial in s2, 53, and s23 of total 

order at most J. Such contributions then naturally give the 

terms in (2.8) or (2.lO)for positive ni. However, although any 

given contribution contributes only polynomials in s2, s3 and 

'23' as s 1 increases more and more terms enter and the series 

could start to diverge to produce terms with negative ni. Thus 

whereas the series mu,st be convergent inside the physical region, 

it could be the representation of a function with a singularity 

outside the physical region. This is a typical phenomena with 

partial wave expansions. 

However, the physical region actually encompasses essentially 

all real s2, '3' '23' This is because the coefficients of the 

large variables s12/Sl and s31 
Is1 in (2.12) have linear zeroes 

inside the physical region and thus slight variations in them 

around zero can give essentially any value of s2, s3, or s23 . 

Consider, for example, 

t1 + t2 - t3 - 2 {F2 Cc.s$2- = 0. (2.13) 

This can be solved for physical Cp2, if 

/t,t-$ -q2 f [2,&5&;/P, 

or 

A (i,,i,/, > = t,:~:~.i,z-ri,i.,-ir’,?~-22,!,, SG 0. 
(2.14) 

Similarly, the other bracketts in (2.7) can vanish if 

A ii,,&, I!~ j d 0 . l6 Thus "nonsense" helicity singularities 

are forbidden for tl Assuming 

v 
"1 "2 "3 

such that A(t!,,&,i, j$o . 

is an analytic function of the ti, th~ey are also 
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forbidden for all ti by analytic continuation, since 4 5 0 

is a finite region in the 1718 t.. ' 1 

D. Singularities Other Than Normal Thresholds 

Throughout this paper we have made the plausible physical 

assumption that singularties in the asymptotic behaviors of 

amplitudes are asymptotic representations of the true singu- 

he amplitude. Thus the term A larity structure of t 

in (1.16) is interpre 

tinuity in sl and s12 

ted as representing a simultaneous discon- 

for large sl, s2,y. "Nonsense" helicity 

singularities would modify this to 

where vl 4 0 + Since Disc 

in s 
s1 

A5 Cc (- s2jn, the discontinuity 

1 apparently has a singularity in s 
2' However, since n is 

(negative) integral this need not represent a singularity for 

large s2 inside the physical region and thus is not necessarily 

in contradiction with the Steinmann relations. Complex singu- 

larities at finite values of the invariant must also be taken 

into account. Inverse powers are usually asymptotic representa- 

tions of singularities of finite extent located at finite values 

of the invariant [see Eq. (2.1111. 
I 

One might indeed expect that such singularities exist in A6 or A6 

and thus "nonsense" helicity singularities are required. For 

example, the usual box singularity (Fig. 6) is present for small 

s1 and s2. However, because s12)> sl and s2, the nature of this 

singularity is rather different than in the four-particle 

amplitude. Indeed it is present in the physical region -- but 

only if approached from (Im sl) (Im s2) (0. Since a Regge type 

term like (-~l)~l-'~~' represents a singularity whether 
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approached from Im sl) 0 or Im sld 0 it cannot represent singu- 

larities of this type. Furthermore for this diagram there are 

also complex anomalous thresholds which are closely tied to the 

above behavior of the double spectral singularity and these also 

cannot be represented by Regge poles. In general we expect 

Regge poles to represent only normal threshold singularities. 

Regge cuts may represent the higher order Landau diagrams. 

19 These points will be discussed further by one of us. 

In this connection we would like to make a remark on the 

relationship between "nonsense" helicity singularities in the six- 

particle amplitude and the five-particle amplitude. If particles 

are Reggeized A5 can be obtained by taking the residue of A5 at 

cl3 = 0 so the absence of "nonsense" helicity singulari- 

ties in A5 shown in Sec. 1I.C eliminates one source of them in 

A5' However, there is another source. The argument of Sec. 11-C. 

should really be made for finite values of the invariants. Thus 

there we wish to assume that sl, s12 /sl, and s31/sl 

are very large but finite. Then there are corrections to 

(2.X2) of order O(l), O(sl), O( 
s12 

/ 21, etc. Since 
%2 

sl 
/, is 

1 
much larger than these, (2.12)essentially still holds. However, 

we can only exclude singularities from a finite region of \ 

OWsl) or O(s31/Sl). Thus singularities like S2’= c (t,, t,, $2) '12($ 

cannot generally be excluded for c $0 *20 These correspond to 

a behavior of the triple-Regge vertex in (2.9) like 

v 23 - 
(2.15) 
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If C(fi, fa, fi) were to vanish for c(3= 0 this would lead to a nonsense helicity singularity in As. 
However, singularities like (2.15) would be asymptotic representations of singularities at srsz= 
C(ti, tl, ra)iz. These are not normal threshold-type singularities and we do not expect them to 
occur in Regge or helicity expansions as we have discussed above. 

III. Conclusion 
We have given arguments for the dependent nature of singularities in complex helicity, i.e., they 
are related to angular momentum singularities by 

m = at-p, (Jo non-negative integer), 

However, although helicity singularities do not correspond to new dynamical objects, they do 
determine distinct asymptotic limits. Thus through their determination of helicity singularities, 
singularities in angular momentum determine asymptotic limits in addition to the conventional 
multi-Regge limit. 
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FIGURE CAPTIONS 

Fig. 1. Kinematics for the five-particle amplitude. 

Fig. 2. Kinematics for six-particle amplitude. 

Fig. 3. Integration contour for Eq. (1.14). 

(a) Complex j, plane when j, integration is performed 

first. (b) Complex m plane when m is performed first, 

Fig. 4. Discontinuity of A5. 

Fig. 5. Schwartz inequality as applied in Sec. II A. 

Fig. 6. Box Diagram for As. 
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